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SUMMARY 

A new version of a numerical algorithm for the Lagrangian treatment of incompressible fluid flows with free 
surfaces is developed. The novel features of the present method are the adoptions of the Lagrangian finite 
element method and the velocity correction technique. The use of the velocity correction approach makes the 
computational scheme extremely simple in algorithmic structure. Hence, the present method is particularly 
attractive for large-scale problems. The techniques discussed here are applied to some two-dimensional 
sloshing problems, which may indicate the versatility and effectiveness of the present method. 

INTRODUCTION 

This paper deals in detail with a new finite element technique for the numerical solution of fluid 
flow problems involving free surfaces, and with the numerical analysis of two-dimensional sloshing 
problems. The analysis of sloshing phenomena is a very important problem of engineering 
significance, as exemplified by oil oscillations in large storage tanks and water oscillations in 
reservoirs due to earthquakes. Many theoretical and numerical analyses of sloshing problems have 
been carried out by many Most of them, however, are based on the potential flow 
theories, and cannot be applied to oil oscillations with strong viscous effects. To  overcome this 
difficulty the present paper deals with transient motions of incompressible viscous fluid in 
containers. The numerical analysis of viscous fluid flow problems involving free surfaces is very 
complicated. There are two reasons for this. First, the position of the free surface varies with time in 
a manner not known a priori, and this fact prevents the analysis from being completely 
straightforward. Hence, there must be some means of tracking the position of the free surface. 
Secondly, the accurate free surface boundary condition must be imposed. In solving such difficult 
problems the finite element method combined with the Lagrangian description can be applied 
effectively. 

Two basic viewpoints are generally considered in discretizing a fluid by a finite difference or finite 
element method. The first is the Eulerian description, which treats the mesh as a fixed reference 
frame through which the fluid moves. The second is known as the Lagrangian description, in which 
the mesh of grid points is embedded in the fluid and moves with it. In the numerical analysis of fluid 
flows with free surface, a method in which the fluid is described by an Eulerian representation and 
the free surface is described by a Lagrangian representation is widely employed.'-" In such 
methods it is difficult to solve problems involving complicated free surface structure. Furthermore, 
it is necessary to discretize the fluid domain at each time step according to the profile of the free 

0271 -2091/86/090659-12SO6.00 
0 1986 by John Wiley & Sons, Ltd. 

Received 16 October 1985 
Revised 3 March I986 



660 B. RAMASWAMY. M. KAWAHARA A N D  T. NAKAYAMA 

surface. Hence, it requires a lot of computational time. On the other hand, the Lagrangian updating 
process is simple in principle, but with large displacements a ‘convolution’ of the mesh is inevitable. 
This diEculty can be removed by adopting some automatic rezoning techniques which may help to 
solve a wide variety of problems. In the following it will be demonstrated how a Lagrangian finite 
element method may be implemented for an incompressible Newtonian liquid. In the present 
method the domain is assumed to be covered by a mesh of finite elements whose vertices move with 
a fluid. In this process, fluid in the interior of a finite element always remains in that element, and 
fluid boundaries always move with the element boundaries. In an incompressible Lagrangian 
calculation the volume of each element must remain constant. To satisfy this constraint a velocity 
correction procedure which is based on Chorin’sI2 idea originally used in the finite difference 
method, is employed. Donea et ul.13914, Schneider and Raithby,’5,’6 Glowinsky et ul.’ 7, 

Mizukami and Tsuchiya’* and Kawahara and Ohmiya” have adopted a similar approach to 
the Eulerian formulation of the Navier-Stokes equations in the case of the finite element method. 
This method is classified as the semi-implicit method. 

BASIC EQUATIONS 

Throughout this paper, equations are described by using indicia1 notation and the summation 
convention for repeated indices. The problem under consideration is the unsteady motion of a 
liquid in a two-dimensional rectangular container subjected to forced pitching oscillations. The 
container has a width 2b and is filled with a liquid to a height h in the stationary condition as 
shown in Figure 1. The rectangular Cartesian co-ordinate system x i  (i = 1,2) is fixed to the inertial 
space, and its origin is taken at the centre of the bottom of the container, as shown in Figure 1. Let V 
be a fluid domain which is surrounded by a piecewise smooth boundary S.  The mathematical 
description of the motion of an incompressible viscous Newtonian fluid is given by the Navier- 
Stokes equations and the equation of continuity as follows: 

Figure 1 .  A two-dimensional container 

h 
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pDui/Dt - oij,j + p f i  = 0, in V 

u . . = o  1.1 7 in I/ 

where 

and where ui(i = 1,2) are the xi-components of the fluid velocity; p f i  are the body forces due to 
gravity, namely f, = 0 and f, = g; p is the pressure; p is the constant density; p is the constant shear 
viscous coefficient; t is the time. All the parameters used in the calculations are non- 
dimensionalized by using the width of the container, 2b, the acceleration due to gravity, g, and the 
fluid density, p, as follows: 

u: = ui/J(2bg) 
xf = xi/2b 

P' = p/pg(2b) 
f = fi/g 
t' = tJ(g/2b) 

Transforming equations (1) and (2) into non-dimensional form and dropping the primes for 
simplicity, the equations of motion and the equation of continuity are 

Du,/Dt + - (l/Re)(ui,j + u j , J j  + fi = 0, in V 

u . . = O  1.1 3 in I/ 

where Re is the Reynolds number and is defined as Re = p(2b) J(2bg)lp. 
The boundary S consists of two kinds of boundaries, namely the free surface boundary S ,  and 

the solid wall boundary S, of the container. On the free surface boundary, the normal stress should 
be equal to the atmospheric pressure and the tangential stress should vanish. These conditions 
are expressed as 

(7) 0. .)2. = 0 
I J  J , On '1 

where the atmospheric pressure is assumed to be zero and nj  is the direction cosine of the outward 
normal on the boundary with respect to xj-axis. On the wall of the container, the normal 
component of the fluid velocity to the wall is equal to the transverse velocity of the container due to 
a pitching motion. Then, the boundary condition is expressed as 

uini =rQ(t),  on S ,  (8) 
where Q ( t )  is the angular velocity of the pitching motion, whose direction is assumed to be positive 
in the clockwise direction and r is the distance from the origin to the nodal points on the wall of the 
container. When the amplitude of the pitching motion is small, the boundary condition (8) can be 
approximated as 

u1 = rQ(t) 
u, = o  

Initial conditions for the present analysis are clearly stated in the section of numerical examples. 
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LAGRANGIAN METHOD 

In order to implement a numerical solution procedure for the Lagrangian formulation it is 
necessary to discretize time and material. This is in contrast to a numerical solution of an Eulerian 
formulation, where one would discretize time and space. The basic concept of the analysis 
presented in this paper is the idea that the material time derivative can be approximately 
determined by the functions known at both deformed and undeformed positions during a short 
time increment. The function at the deformed position cannot be obtained before computation. 
Thus, iterative computation is necessary. 

The total time interval is divided into many short time increments, denoted by At, and the fluid is 
discretized into a lot of triangular finite elements. The location of a nodal point of an element is 
denoted by x; at the nth time instant t"(t" = nAt). The velocities at t" and t"+l are written as 

The material derivative is the time derivative considering the change of location of a fluid particle. 
It can be approximated by using equations ( 1  1)  and (12) as in the following form: 

Dui/Dt = (u;+ - u;)/At (13) 

x;+ = X; + (At/2)(~7+ + u;) (14) 

The location of a nodal point after the increment At is given by 

Using equation (14), 'the location can be determined once the velocity has been computed. 
As previously mentioned, it is very important that the boundary conditions on the free surface 

should be applied accurately. Then, in the present Lagrangian method, an iterative computational 
procedure is used to obtain the accurate position of the free surface. The iteration is repeated in 
every time step and proceeds as follows: at the initial step of iteration, velocity u;+l(O), pressure 
p"+l(O) and position x;+'(O) are computed as 

where ul+  l ( O ) ,  for example, means the value of the velocity component at the initial step of iteration 
in the (n + 1)th time interval; gi and h mean that velocity and pressure can be computed following 
the velocity correction method (explained in the next section) based on the previously known 
velocity u; and pressure p" at position x; and at time t". At the mth iteration cycle (where 
m = 1,2,. . . , MAX; MAX is the maximum number of iterations) the values are updated by the 
following equations: 

Equations (18) and (19) specify that the velocity and pressure can be computed using the latest 
positions of the fluid particles. The iteration is repeated until the computed velocity satisfies the 
following convergence criterion: 

I < &  (21) n+l(m)-u;+l(m-l) lui 
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where E is a previously defined small value. At convergence, it is obtained that 

Thus the velocity and pressure considering the change of position of a fluid particle can be 
computed. The computation is repeated for all n = 1,2,. . . ,NMAX, where NMAX is the total 
number of time points. 

The procedure outlined above employs the lagrangian description of fluid motion. Its 
advantages are that material interfaces are properly maintained and the absence of numerical 
instability associated with convective terms. 

VELOCITY CORRECTION METHOD 

To obtain the velocity and pressure at time t"", the velocity correction method is successfully 
used in the present analysis. This section describes how to compute the functions gi  and h in 
equations (15) and (16), which in turn help to compute ui and p in equations (18) and (19). 

Using equation (13), equation of motion ( 5 )  can be discretized into the following form: 

12;'' = u ; - A t ( p : i - ( l / R e ) ( u ; , j + u ~ , i ) , j + f ; }  (25) 
where 6; + is the approximate velocity field not satisfying the incompressibility condition. We 
denote the exact velocity which satisfies the incompressibility constraint by u;" and pressure 
by p"+' at time t n + ' ,  and assume that they satisfy the following equations: 

u;" = u; - At(p::' - (l/Re)(uL + u : , ~ ) , ~  +f;} (26) 

u;,+' = 0 (27) 

Curl u;+ = Curl u"; + (28) 

Taking rotation on both sides of equations (25) and (26) the following relation can be obtained: 

From the above relation it is clear that 

u;+1 = q + 1 +  4 , i  (29) 
where 4 is some scalar potential. Taking the divergence on both sides of equation (29) together 
with the incompressibility constraint (27), the following equation for 4 can be derived: 

(30) 

4 = 0 ,  onS, (31) 

4, in i  = 0, on S ,  (32) 

4 ..= - - n + l  
,ii ui,i 

To solve the above equation the following boundary conditions are applied: 

Equation (30) can be solved by the finite element method. Thus the potential at all nodal points 
in the flow field can be obtained. The substitution of the resulting potential in equation(29) 
yields the corrected velocities at all nodal points. Pressure, p n + ' ,  can be calculated as 

p"' = p" - 4 / A t  (33) 
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Equation (33) can be derived from equations (25), (26) and (29). Based on the procedures expressed 
by equations (25),(30),(29) and (33), the velocity ul+' and pressure p"+' can be obtained. 

FINITE ELEMENT METHOD 

Equation (25) with (8); equations (29), (30) with (31),(32); and equation (33) can be discretized by 
the finite element method. Then recalling equations (1 1)  and (12), one can evaluate all the functions 
at time t"+ or t". The superscript n denotes the function evaluated at time t" and position x l  . 
A weak formulation of the problem defined by equations (25), (29) and (30) is obtained by 
multiplying the differential equations by suitable weighting functions and integrating over the 
domain K Multiplying the equations (25) and (29) by the weighting function ui, and equation (30) 
by the weighting function q and integrating them over the domain K the following weighted 
residual equations of the original problem are obtained: 

- At J (ul f 7)dV + At Jsn (uloijnj)dS 

{ (u;+' ul+')dV= (0:" iil+')dV+ 1 p+ L (ul" 4,i)dV 
V"+L L1 
I.. JV"+. JS"+. 

(34) 

(35) 

(qyi+' 4,i)dV= (q"+'iil,+' )dV + (4"' 4,ini) dS (36) 

v" 

Assume that the flow field to be analysed is divided into a number of small domains called finite 
elements. The velocity and pressure in each finite element are interpolated by using linear shape 
functions and are expressed in the following form: 

u; = 0; u z  (37) 

p"=@,"p"  a a  (38) 
where @: is the shape function of the crth node at time t" and location ~ 7 . u : ~  denotes the nodal 
velocity at the crth node in the ith direction at time t" and location x l  and p: is the pressure 
at the crth node at time t". The weighting functions are interpolated in the manner similar to 
equations (37) and (38) as 

u; = 0: gi (39) 

q" = 0; q; (40) 
where u:i and q: denote the values at the ath node at time t". Introducing equations (37)-(40) 
into equations (34)-(36) and using the arbitrariness of the weighting functions, the finite element 
equations are derived as follows: 

M:; ' ii;: ' = M:p uii - At(S". aMi .u". BJ - H:ip p i  + N :  f :i - 6:i) 

- n + l u n + l  = - n + 1  - n + 1  
M a p  pi M a p  ugi +H:t$'4p 

(41) 

(42) 
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(43) 
where 

In equations (41) and (42), M:p means the lumped matrix obtained from the consistent matrix 
M:p. 

NUMERICAL EXAMPLES 

Consider the container as shown in Figure 1, which is subjected to the following forced sinusoidal 
pitching oscillation about the origin 0: 

8(t) = Ocosot;  t 2 0 (44) 
where O ( t )  is the angle of inclination of the container at time t, and 0 and o are the amplitude 
and frequency of the forced oscillation, respectively. The angular velocity of pitching is then given 
as follows: 

n(t) = dO(t)/dt 

= -Omsincot; t 2 O  (45) 

At t = 0, the container is assumed to be inclined at an angle 8 and the fluid in the container is 
at rest. From these assumptions the initial conditions for the present analysis are given as follows: 
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Figure 2. Free oscillation without viscous effect 

where q ( x l , t )  is the displacement of the free surface from the pndisturbed free surface. In 
all the subsequent calculations the total number of nodal points and finite elements are 441 and 
800, respectively. 

Free oscillation 

First, we compute the free oscillation with small amplitude of the liquid in the container to 
verify the adaptability of the present finite element computer program with Lagrangian 
description. As the initial profile of the free surface, the first antisymmetric natural mode with 
amplitude 0.01 is assumed. The time increment is At = 0005. Figure 2 shows the computed time 
histories of q( f 1/2, t )  in the case of a non-viscous effect. From the computed result it can be 
seen that the free surface oscillates at  a nearly constant amplitude without any artificial damping 
effect. Figure 3 shows the time histories of q( f 1/2, t )  with a viscous effect, where v is 0.01. 

Forced oscillation without viscous effect 

Consider the liquid in a container which is forced to pitch about the origin, as given by 
equation (44). The parameters used in the calculation are 8 = 0.2", w = 1.05, v = 0.0 and At = 0.002, 
where v is the kinematic viscosity. The computed wave profile, velocity and pressure at  elapsed 
times t = 12 and t = 21 are shown in Figures 4 and 5, respectively. Figure 6 shows the time 
histories of q( f 1/2, t )  for the liquid in the container. The computed results show the distribution 
of swelling, which clearly coincides with the physical phenomena in the case of non-viscous fluid 
flow analysis. 

Forced oscillation with viscous effect 

The last example is the computation of a sloshing problem with viscous effect. The 
parameters used in the calculation are 8 = 02", w = 1.57, v = 0.01 and At = 0002. Figure 7 shows 
the time histories of q( f 1/2, t )  for the liquid in the container. The use of viscous fluid gives rise 
to a damping effect, which makes the displacement of the free surface constant after a certain 
period of time. 
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Figure 3. Free oscillation with viscous effect 
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(4 
Figure 4. Computed results at time t = 12.0 (a) mesh division; (b) velocity distribution; (c) pressure distribution 
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-0.02 

Figure 7. Time histories of q( k 1/2, t )  

CONCLUDING REMARKS 

The Lagrangian finite element method has been presented for calculating the transient 
dynamics of incompressible, viscous fluids having free surfaces. This new method possesses an 
extremely simple algorithmic structure, which is achieved by adopting the velocity correction 
method for the time integration of the unsteady Navier-Stokes equations. Lagrangian co- 
ordinates permit a good treatment of free surfaces. The present method is illustrated with some 
physical problems involving sloshing dynamics of inviscid and viscous fluids, which indicate the 
possibility of employing the same technique to attack a wide variety of water wave problems. 
The authors are at present looking at the adaptation of this method to more difficult problems, 
such as those involving highly non-linear and large viscosity effects. 
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